Music Automaton

Abstract

This project tries to answer the question, if a piece of music can be considered as a result of a so called grammar.

Furthermore the thesis is, that a piece of music, generated on a given grammar, always sounds kind of 'plausible'.

In general it's said that a piece 'speaks his own language', which in this case would be the language, induced by the grammar.

Following here the hierarchy of Noam Chomsky, the language would be estimated as a 'type-0 language'. (The restraint in the productions $|w1| \le |w2|$ does not exist, and there are no limits for the productions)

Given the grammar, there are constructed entities, called words.

Remember: Each word constructed by the same grammar is part of the same language.

So the automaton will produce a certain amount of words, which will simply be concatenated. That means that the piece of music is considered as a sequence of words.

(On the linguistic level, this would be the phrase).

To keep the things clear, the output is a piano score, wich means the automaton is limited to the 3 (more or less) scalable parameters: Time, Pitch, Velocity.

The formal grammar

The formal grammar is defined as: $G = (V, \Sigma, P, S)$.

i)

Variables (V): There are no Variables except S. $V = \{S\}$

ii)

The Alphabet (Σ) is defined as $\Sigma = \{T \times P \times V\}$ It's the cartesian product of the sets T,P,V. T contains the time-possibilities. P contains the pitch-possibilities.

V contains the velocity-possibilities.

Where $|\Sigma^*|$ is infinite, only due the T-set. P ist limited here. It's maximum range is 0 - 127 (kind of \mathbb{N} . - it would be infinite, if any mirco-interval would be allowed (kind of \mathbb{R}). V is limited. Its range is 0 - 6, which stands for *ppp*, *pp*, *p*, *mp* - *mf*, *f*, *ff*, *fff*., would be infinite if any dymamik transition with infinite small steps like *crescendo* would be allowed.

The terminal symbols are defined as notecoordinates,

where a notecoordinate is a vector of 3 entries $\begin{pmatrix} t \\ p \\ v \end{pmatrix}, t \in T, p \in P, v \in V.$

t is the time - component,

p is the pitch - component v is the velocity (dynamics) - component.

iii)

The Productions (P)

It occurs the problem, that these 3 components can not be treatet exactly the same way. Respectively they are dependend of each other.

So it's for example possible to 'repeat' a note, wich means to duplicate the time-value. The current word would then contain 2 notes, with same duration, pitch, velocity, just displaced in the time-grid. As a paralell operation you could 'repeat' a note in pitch, what would be a note, same duration, velocity, but displaced in the tonal-grid (tonal-grid means any predefined scale). Thus it formes something, which is in musical terms an intervall.

But on the contrary it's not possible to 'repeat' a note in velocity, because each note maps only 1 dynamic.

The set of production rules in a Chomsky-like grammar is a set of allowed replacements like $a \rightarrow ab$, $ab \rightarrow c$... etc.

In case of the music automaton the production rules are defined as functions $f: \Sigma \rightarrow \Sigma$.

This is allowed accepting the claim that any function who's X (domain) and Y (codomain) are the *same set*, can be explained by a finite sequence of replacements. TODO ? : Mathematical proof.

Example: Let be $P = \{(1)a \rightarrow ab, (2)b \rightarrow abc\}$. Applying (1) then (b) produces $a \rightarrow ab$ (1) \rightarrow aabc.

Can be done by a function:

```
f(X){
  return duplicate X + next 2 subsequent elements.
}
```

This could be even more general, by giving a parameter to f. Lets say: param is the number of repeats and the number of appended elements.

```
f(X, param){
  return param times X + next param subsequent elements.
}
```

gives with X = a and param = 5: aaaaabcdef.

Functions

To procede the equivation $X \rightarrow Y$, (X,Y sets of notecoordinates), there may be applied a *clone*- function to double the value of the lefthand side.

Musicautomaton has the following elementary functions:

- They are *shifting* one of the 3 parameters of notecoordinate.
- *Pt1* changes the starting time of notecoordinate(s).
- *Pt2* changes the end time of notecoordinate(s).

(s).

Pv changes the dynamics of notecoordinate(s).

There are 2 'Time'-functions, as the time-component of a notecoordinate is a tuple (start, end). The functions are working on (predefined) grids.

The T-grid is a sequence of possible t-positions. The For example placing to half notes in a grid [0 to 16], grid width = 16th, is : note1.t_start = 0, note1.t_end = 8; note2.t_start = 8, note2.t_end = 16;

The P-grid is a subdivision of the midi-range (0 - 127) by any scale, defined as a sequence of intervalls. Example: range = (36, 72) scale = [2,2,1,2,2,2,2] wold give a melodic c-minor scale from C3 to C5.

The V-grid was decreibed above.

All operations on this grid are done in modulo. Wich means that the automaton is working in \mathbb{Z} sizeOfGrid .

Based on the elementary functions, its possible to construct kind of macros, wich means:Elementary functions are applied in any combination.Examples: Mt_repeat repeats notecoordinate(s) in time
would call: clone, then on the clone Pt2 and Pt1 with the same Parameter. Mp_add 'repeats' a pitch of notecoordinate(s). (makes intervall / chord)
would call: clone, then on the clone Pp.

As described above, there is no repeat-function for the dynamics.

iv)

The starting element:

 $S = \{notecoordinate \in [T, P, V], \neq \emptyset, finite\}$

is a set of notecoordinates containing at least one element.

Setting the Parameters for the automaton, is the same as defining a grammar, for the music piece. Defining Σ by defining T-,P,V- grids. Defining P by writing any combination of *Productionfunctions* Defining S by any method. Only constraint: $S \in \Sigma$ (V is only {S}).

Further work:

Is the automaton universal ? Is he able to produce any piece of mucic (representable on piano) ? To do so: Is it possible to provide a kind of srcipt for each possible piece of music ?

Fredrik Zeller, Tü. January 2022